Configuration Guide¶
Ralph Orchestrator provides extensive configuration options to control execution, manage costs, and ensure safe operation. This guide covers all configuration parameters and best practices.
Configuration Methods¶
1. Command Line Arguments¶
The primary way to configure Ralph Orchestrator is through command-line arguments:
2. Environment Variables¶
Some settings can be configured via environment variables:
3. Configuration File (Future)¶
Configuration file support is planned for future releases.
Core Configuration Options¶
Agent Selection¶
| Parameter | Default | Description |
|---|---|---|
--agent |
auto |
AI agent to use: claude, q, gemini, acp, or auto |
--agent-args |
None | Additional arguments to pass to the agent |
--acp-agent |
gemini |
ACP agent command (for -a acp) |
--acp-permission-mode |
auto_approve |
Permission handling: auto_approve, deny_all, allowlist, interactive |
Example:
# Use Claude specifically
python ralph_orchestrator.py --agent claude
# Auto-detect available agent
python ralph_orchestrator.py --agent auto
# Pass additional arguments to agent
python ralph_orchestrator.py --agent claude --agent-args "--model claude-3-sonnet"
# Use ACP-compliant agent
python ralph_orchestrator.py --agent acp --acp-agent gemini
# Use ACP with specific permission mode
python ralph_orchestrator.py --agent acp --acp-agent gemini --acp-permission-mode deny_all
Prompt Configuration¶
| Parameter | Default | Description |
|---|---|---|
--prompt |
PROMPT.md |
Path to the prompt file |
--max-prompt-size |
10MB | Maximum allowed prompt file size |
Example:
# Use custom prompt file
python ralph_orchestrator.py --prompt tasks/my-task.md
# Set maximum prompt size (in bytes)
python ralph_orchestrator.py --max-prompt-size 5242880 # 5MB
Execution Limits¶
Iteration and Runtime¶
| Parameter | Default | Description |
|---|---|---|
--max-iterations |
100 | Maximum number of iterations |
--max-runtime |
14400 | Maximum runtime in seconds (4 hours) |
Example:
# Quick task with few iterations
python ralph_orchestrator.py --max-iterations 10 --max-runtime 600
# Long-running task
python ralph_orchestrator.py --max-iterations 500 --max-runtime 86400 # 24 hours
Token and Cost Management¶
| Parameter | Default | Description |
|---|---|---|
--max-tokens |
1,000,000 | Maximum total tokens to use |
--max-cost |
50.0 | Maximum cost in USD |
--context-window |
200,000 | Context window size in tokens |
--context-threshold |
0.8 | Trigger summarization at this % of context |
Example:
# Budget-conscious configuration
python ralph_orchestrator.py \
--max-tokens 100000 \
--max-cost 5.0 \
--context-window 100000
# High-capacity configuration
python ralph_orchestrator.py \
--max-tokens 5000000 \
--max-cost 200.0 \
--context-window 500000
Checkpointing and Recovery¶
| Parameter | Default | Description |
|---|---|---|
--checkpoint-interval |
5 | Iterations between checkpoints |
--no-git |
False | Disable git checkpointing |
--no-archive |
False | Disable prompt archiving |
Example:
# Frequent checkpoints for critical tasks
python ralph_orchestrator.py --checkpoint-interval 1
# Disable git operations (for non-git directories)
python ralph_orchestrator.py --no-git
# Minimal persistence
python ralph_orchestrator.py --no-git --no-archive
Monitoring and Debugging¶
| Parameter | Default | Description |
|---|---|---|
--metrics-interval |
10 | Iterations between metrics logs |
--no-metrics |
False | Disable metrics collection |
--verbose |
False | Enable verbose logging |
--dry-run |
False | Test configuration without execution |
Example:
# Verbose monitoring
python ralph_orchestrator.py --verbose --metrics-interval 1
# Test configuration
python ralph_orchestrator.py --dry-run --verbose
# Minimal logging
python ralph_orchestrator.py --no-metrics
Security Options¶
| Parameter | Default | Description |
|---|---|---|
--allow-unsafe-paths |
False | Allow potentially unsafe file paths |
Example:
# Standard security (recommended)
python ralph_orchestrator.py
# Allow unsafe paths (use with caution)
python ralph_orchestrator.py --allow-unsafe-paths
Retry and Recovery¶
| Parameter | Default | Description |
|---|---|---|
--retry-delay |
2 | Delay between retries in seconds |
Example:
# Slower retry for rate-limited APIs
python ralph_orchestrator.py --retry-delay 10
# Fast retry for local agents
python ralph_orchestrator.py --retry-delay 1
ACP (Agent Client Protocol) Configuration¶
ACP Options¶
| Parameter | Default | Description |
|---|---|---|
--acp-agent |
gemini |
Command to run the ACP-compliant agent |
--acp-permission-mode |
auto_approve |
Permission handling mode |
Permission Modes¶
| Mode | Description | Use Case |
|---|---|---|
auto_approve |
Approve all tool requests automatically | Trusted environments, CI/CD |
deny_all |
Deny all tool requests | Testing, sandboxed execution |
allowlist |
Only approve matching patterns | Production with specific tools |
interactive |
Prompt user for each request | Development, manual oversight |
Configuration File (ralph.yml)¶
adapters:
acp:
enabled: true
timeout: 300
tool_permissions:
agent_command: gemini # ACP agent CLI command
agent_args: [] # Additional CLI arguments
permission_mode: auto_approve
permission_allowlist: # For allowlist mode
- "fs/read_text_file:*.py"
- "fs/write_text_file:src/*"
- "terminal/create:pytest*"
Environment Variables¶
| Variable | Description |
|---|---|
RALPH_ACP_AGENT |
Override agent_command |
RALPH_ACP_PERMISSION_MODE |
Override permission_mode |
RALPH_ACP_TIMEOUT |
Override timeout (integer) |
Example:
# Using environment variables
export RALPH_ACP_AGENT=gemini
export RALPH_ACP_PERMISSION_MODE=deny_all
python ralph_orchestrator.py --agent acp
ACP Profile¶
For ACP-compliant agents:
python ralph_orchestrator.py \
--agent acp \
--acp-agent gemini \
--acp-permission-mode auto_approve \
--max-iterations 100 \
--max-runtime 14400
Configuration Profiles¶
Development Profile¶
For local development and testing:
python ralph_orchestrator.py \
--agent q \
--max-iterations 10 \
--max-cost 1.0 \
--verbose \
--checkpoint-interval 1 \
--metrics-interval 1
Production Profile¶
For production workloads:
python ralph_orchestrator.py \
--agent claude \
--max-iterations 100 \
--max-runtime 14400 \
--max-tokens 1000000 \
--max-cost 50.0 \
--checkpoint-interval 5 \
--metrics-interval 10
Budget Profile¶
For cost-sensitive operations:
python ralph_orchestrator.py \
--agent q \
--max-tokens 50000 \
--max-cost 2.0 \
--context-window 50000 \
--context-threshold 0.7
High-Performance Profile¶
For complex, resource-intensive tasks:
python ralph_orchestrator.py \
--agent claude \
--max-iterations 500 \
--max-runtime 86400 \
--max-tokens 5000000 \
--max-cost 500.0 \
--context-window 500000 \
--checkpoint-interval 10
Configuration Best Practices¶
1. Start Conservative¶
Begin with lower limits and increase as needed:
# Start small
python ralph_orchestrator.py --max-iterations 5 --max-cost 1.0
# Increase if needed
python ralph_orchestrator.py --max-iterations 50 --max-cost 10.0
2. Use Dry Run¶
Always test configuration before production:
3. Monitor Metrics¶
Enable metrics for production workloads:
4. Set Appropriate Limits¶
Choose limits based on task complexity:
- Simple tasks: 10-20 iterations, $1-5 cost
- Medium tasks: 50-100 iterations, $10-25 cost
- Complex tasks: 100-500 iterations, $50-200 cost
5. Checkpoint Frequently¶
For long-running tasks, checkpoint often:
Environment-Specific Configuration¶
CI/CD Pipelines¶
python ralph_orchestrator.py \
--agent auto \
--max-iterations 50 \
--max-runtime 3600 \
--no-git \
--metrics-interval 10
Docker Containers¶
ENV RALPH_AGENT=claude
ENV RALPH_MAX_COST=25.0
CMD ["python", "ralph_orchestrator.py", "--no-git", "--max-runtime", "7200"]
Kubernetes¶
apiVersion: v1
kind: ConfigMap
metadata:
name: ralph-config
data:
RALPH_AGENT: "claude"
RALPH_MAX_COST: "50.0"
RALPH_MAX_ITERATIONS: "100"
Troubleshooting Configuration¶
Common Issues¶
- Agent not found
-
Solution: Check agent installation with
--agent auto -
Exceeding cost limits
-
Solution: Increase
--max-costor use cheaper agent -
Context overflow
-
Solution: Decrease
--context-thresholdor increase--context-window -
Slow performance
- Solution: Increase
--checkpoint-intervaland--metrics-interval
Debug Commands¶
# Check configuration
python ralph_orchestrator.py --dry-run --verbose
# List available agents
python ralph_orchestrator.py --agent auto --dry-run
# Test with minimal configuration
python ralph_orchestrator.py --max-iterations 1 --verbose
Configuration Reference¶
For a complete list of all configuration options, run:
Next Steps¶
- Learn about AI Agents and their capabilities
- Understand Prompt Engineering for better results
- Explore Cost Management strategies
- Set up Checkpointing for recovery