Implementation Best Practices¶
Overview¶
This guide outlines best practices for implementing and using Ralph Orchestrator in production environments.
Architecture Best Practices¶
1. Modular Design¶
- Keep agent implementations separate and modular
- Use dependency injection for flexibility
- Implement clear interfaces between components
2. Error Handling¶
# Good practice: Comprehensive error handling
try:
response = await agent.process(prompt)
except AgentTimeoutError as e:
logger.error(f"Agent timeout: {e}")
return fallback_response()
except AgentAPIError as e:
logger.error(f"API error: {e}")
return handle_api_error(e)
3. Configuration Management¶
- Use environment variables for sensitive data
- Implement configuration validation
- Support multiple configuration profiles
Performance Optimization¶
1. Caching Strategies¶
# Implement intelligent caching
from functools import lru_cache
@lru_cache(maxsize=128)
def get_agent_response(prompt_hash):
return agent.process(prompt)
2. Connection Pooling¶
- Reuse HTTP connections
- Implement connection limits
- Use async operations where possible
3. Rate Limiting¶
# Implement rate limiting
from asyncio import Semaphore
rate_limiter = Semaphore(10) # Max 10 concurrent requests
async def make_request():
async with rate_limiter:
return await agent.process(prompt)
Security Best Practices¶
1. API Key Management¶
- Never hardcode API keys
- Use secure key storage solutions
- Rotate keys regularly
2. Input Validation¶
# Always validate and sanitize inputs
def validate_prompt(prompt: str) -> str:
if len(prompt) > MAX_PROMPT_LENGTH:
raise ValueError("Prompt too long")
# Remove potentially harmful content
sanitized = sanitize_input(prompt)
return sanitized
3. Output Filtering¶
- Filter sensitive information from responses
- Implement content moderation
- Log security events
Monitoring and Observability¶
1. Structured Logging¶
import structlog
logger = structlog.get_logger()
logger.info("agent_request",
agent_type="claude",
prompt_length=len(prompt),
user_id=user_id,
timestamp=datetime.utcnow()
)
2. Metrics Collection¶
- Track response times
- Monitor error rates
- Measure token usage
3. Health Checks¶
# Implement health check endpoints
async def health_check():
checks = {
"database": await check_db_connection(),
"agents": await check_agent_availability(),
"cache": await check_cache_status()
}
return all(checks.values())
Testing Strategies¶
1. Unit Testing¶
# Test individual components
def test_prompt_validation():
valid_prompt = "Calculate 2+2"
assert validate_prompt(valid_prompt) == valid_prompt
invalid_prompt = "x" * (MAX_PROMPT_LENGTH + 1)
with pytest.raises(ValueError):
validate_prompt(invalid_prompt)
2. Integration Testing¶
- Test agent interactions
- Verify error handling
- Test edge cases
3. Load Testing¶
Deployment Best Practices¶
1. Container Strategy¶
# Multi-stage build for smaller images
FROM python:3.11 as builder
WORKDIR /app
COPY requirements.txt .
RUN pip install --user -r requirements.txt
FROM python:3.11-slim
COPY --from=builder /root/.local /root/.local
COPY . .
CMD ["python", "-m", "ralph_orchestrator"]
2. Scaling Considerations¶
- Implement horizontal scaling
- Use load balancers
- Consider serverless options
3. Blue-Green Deployments¶
- Minimize downtime
- Enable quick rollbacks
- Test in production-like environments
Common Pitfalls to Avoid¶
1. Over-Engineering¶
- Start simple and iterate
- Don't optimize prematurely
- Focus on core functionality first
2. Ignoring Rate Limits¶
- Always respect API rate limits
- Implement exponential backoff
- Monitor quota usage
3. Poor Error Messages¶
# Bad
except Exception:
return "Error occurred"
# Good
except ValueError as e:
return f"Invalid input: {e}"
Maintenance Guidelines¶
1. Regular Updates¶
- Keep dependencies updated
- Monitor security advisories
- Test updates in staging first
2. Documentation¶
- Maintain up-to-date documentation
- Document configuration changes
- Keep runbooks current
3. Backup and Recovery¶
- Implement regular backups
- Test recovery procedures
- Document disaster recovery plans
Conclusion¶
Following these best practices will help ensure your Ralph Orchestrator implementation is: - Reliable and performant - Secure and maintainable - Scalable and observable
Remember to adapt these practices to your specific use case and requirements.